Título: Perceptron algorithm
Descripción: Linear classifiers, that is, classifiers based on linear discriminant
functions, are formally introduced first. Then, a well-known learning
technique, the so-called Perceptron algorithm, is described for general
multiclass classification learning. A simple yet very instructive working
example is provided with detailed calculations. The example is followed by a
brief discussion on what one can expect from Perceptron's convergence and
quality of the solution. The presentation ends by citing two basic redferences
on the Perceptron algorithm.
The training ojectives of the learning object are: 1) To apply the Perceptron
algorithm to a classification task; and 2) To describe the Perceptron algorithm's
behaviour as a function of its parameters. Juan Císcar, A.; Civera Saiz, J.; Sanchis Navarro, JA. (2018). Perceptron algorithm.
http://hdl.handle.net/10251/104566
Autor/a: Juan Ciscar Alfons
+ Universitat Politècnica de València UPV:
https://www.upv.es
+ Más vídeos en:
https://www.youtube.com/valenciaupv
+ Accede a nuestros MOOC:
https://upvx.es
#Perceptron algorithm #intelligent systems #machine learning #artificial intelligence #1203 - Ciencias de la Computación
Тэги:
#Perceptron_algorithm #intelligent_systems #machine_learning #artificial_intelligence #1203_-_Ciencias_de_la_Computación